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ABSTRACT

Under a non-degeneracy assumption on the non-zero entries of a *ven sparse
matrix, a polynomially-bounded algorithm is presented that perform row opera-
tions on the given matrix which reduce it to a sparsest possible mat with the
same raw space. For each row of the matrix, the algorithm performs maximum
cardinality matching on the bipartite graph associated with a subm which
is induced by that row. The dual of the optimal matching then lesthe
row operations that will be performed on that row. We.w a variant
algorithm that processes the matrix in place, thus conserving storage and time.
The modifications needed to apply the algorithra to matrices that do not neces-
sarily satisfy the non-degeneracy assumptio. -so described. A particularly
promising application ,of this algorithm is in •!uction of linear constraint
matrices.

running head: Making Matrices Optimally Sparse
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1. Intmduetbn

An important factor in our present ability to solve maw large-scale numeri-
cal problems is the recognition that these problems are nearly always sparse, and
that taking advantage of sparsity can turn a hitherto practically unsolvable prob-
lem into a solvable one. Perhaps the best example of this is in large-scale linear
programming, where highly refined sparse matrix factorization routines have al-
lowed problems with huge coefficient matrices to be solved (see e.g., Duff (1980)
or Bunch and Rose (1976)). However, although sparsity is known to be helpful,
relatively little attention seems to have been paid to techniques that economically
increase sparsity (decrease density), thereby improving the eficiency of sparse
algorithms. In this context, this paper considers the Spmene Problem (SP):

Given a large, sparse system of linear equations

AM b, (1)

find an equivalent system

Xz=I (W)

which has the minimum possible number of non-sero entries in

Constraints of the form (1) are among the most common in largesale
optimisation, so that it is potentially very useful to solve (SP). Under a a-
degeneracy assumption, we shall present an efcient algorithm that solves (SP)
using maximum cardinality matching. Sections 2-4 will assume familiarity khk
notions of graph theory and maximum cardinality bipartite matching (ms, e.g.,
Lawler (1976)). Section 2 develops most of the machinery needed for the proof,
and uses it to derive an algorithm tht solves a subproblem of (SP). In Section 3
we use the algorithm of Section 2 to construct the full algorithm, and prove that
it solves (SP). We then give a variant algorithm that uses s space and show
that it also solves (SP). Section 4 discusses the mod iat necessary to apply
the algrithm on matrices that do not necessarily satisfy the un-dgenera y
assumption. Finally, Section 5 considers further questions raised by this research.

. eramfbm md the On Row Alge thn

In this paper we shall sawu that the matrix A In (1) has fll row rak.
We know from linear alpbra that (2)1i equivalent to (1) It and only f X = TA
ad I = Tb for some square non-singular matrix T. We ae saing for a general
algoritum that mak no assumptions about an special structure in A, ad
thu can d T almost solely from the ap.ar't pttern of A (the positions of
the mo-seros in A). What can go wrong in this aim Is that we can encouner



2 )*ak~mg Makicu OPUinal spun Uetji 2

u~xpeted'cancellation. To illustrate, consider the Molowing two ANot with
tesame sparsity Pattern, treated with the same T:

1 00 10 0-TA, = 1 2

In both cases T represents the uniqu~e lina trafrmto that adds the miii-
tPiNl of rows 2and 3to raw Iwhich mals 1 2seo and avds 1il-in in 1 3.
In the It case the Sparsity increased, in the Wsond cmn it decreased. The
difficulty is that Al has some dependent submatrices that ane not apparent from
the sparsity pattern alone. The possibility of this Mhnohnns solving
(SP) too diffcult. in general, as shown by the following result.

Theorem 1. (Stocmeyet (1982)) (5P) is NP-Hard in general. (See the Appendix
for the proof.) 0

Thus, to get a polynomial algorithm for (8?), we must make some assump-
tion about A. Suppose that A is n x %, and lot R C (11,...m},~ C C
(It ... s }.i We denote the submatrx fAaInoexdby the tow in Rand the
coluom in C by ARC The #Psparl pattern of AR0 aturally inducts a bipartite
grph 9io= (t,C,Z) wher R={((, )e R xC I a, 0}o. Let M(g9) be
the number of edges, In a maximum cardinallty matching in -the bipatte graph
S9. If IRI = ICI, then the usual expansion of dotAitc has at least one non-sero
term precisl -when M(980c) = IM9 , and when A is ageseral', we expect the
converse of this to be true a well. This reasoning lIads us to assume henceforth
tAt A has the

Mate~ag Property (MP): rank Anc = M(9n) for all R mad C.
For exaple, Al above does Wt satisfy (P) whereas Ae does. Notoe that Uf the
entries of A awe IdependeMt algebraic indetierminates then (MP') i satisfed

Since T must be non-singular, .4(T) him a perfect matching which we can
assume without loss of generality is the main diagonal. We can further assume
that ta = It i = 1,2, ... ,pas by scaling the rows of T, so that the non-sero
entries in row i of T indicate the multipliers for the rows to be added to row

* of A. Viewed In this war, (SP') breaks down into m one raw spisrskt problems
(0R814, 4 = 1,2,1 . .. , n. (ORSPj) is the problem:

Find{()6h, k 0 0so that

= j. + E )&%A&.. (8)
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has the minimum possible number of non-zeros.

Not all solutions to (3) are equally good. Since we expect that the mount of
arithemetic needed to do the calculations in (3) depends upon the number of
rows with non-zero multipliers, ideally we would also lie to solve the Strong
(ORSP,):

Among all optimal solutions to (3), find one that minimizes

I{k I Xj% 0 01.

It is not clear at this point that we can solve (SP) by succesively soag
(ORSPj) for i = 1, 2,..., m; nevertheless we shall concentrate on (ORSP1 ) in
the remainder of this Section.

A set of multipliers { Xk I k > I} for (3) when i = 1 defines the following
index subsets:

U={k > 1 IXk 5O},
H {j I NI,, = 0 and a6j 9 01,
S = {j i = 0 and aij = 0 and ae #0 for some k E U }
G=HUS,
F= (j jIri j 0and atg =0},
P=FUS={j azj =0 andasj#O0for some kE U}, and" ~Z={jlai 1 =0}.

That is, U is the set of used rows; H, the set of bit columns, where a non-zero
was changed to a zero; S, the set of sved columns, where a zero that we would
have expected to be filled-in (since aj 9 0) was not filled-in; G, the set of god
columns, where the entry was actively manipulated for the better; F is the set
of fled-in columns; P is the set of potential nl-n columns; and Z is the set of
zero columns. The net decrease in non-zeros in row 1 is then IHI - IFI, which
we want to maximize to solve (ORSPi). The next theorem states the intuitive
result that if k columns are affected for the good, then at least k independent
rows must have been used (we omit the technical proof).

Theen 2. For any set of multipliers, M(Sua) = IGI, and hence rankAua -
IGI. 0

Theorem 2 implies In particular that I IGI always holds. N I I >
IGI, we can select a IGI-subset of U which perfectly matches to G and use the
corresponding square non-singular (by (MP)) submatrix of A to zero out Ala,
thus achieving the same result with less work. Conversely, if ARC is a square
submatrix with a perfect matching, Theorem 2 ensures that if we use Ajeo to
zero out A10 , then G = C, i.e., only non-zeros In C are hit, and fill-in occurs in
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every position where it would be expected. That is, Theorem 2 shows the crucial
fact that (MP) implies that there is no 'unexpected cancellation.0

Hence, we can assume that the canonical situation is that JUI = IGI and
gou( has a perfect matching. Then AUG is non-singular by (MP), so the { X1 }
will be uniquely determined by solving

XTAuG = A1G. (4)

Equation (4) allows us to think of the { \ } as coming from U and G rather than
vice versa, thereby reducing (SP) to the more combinatorial problem of finding
optimal U and G.

Thus we need only consider all possible U, and for each U consider only the
G which match perfectly into U. There are potentially many possible ways to
select G C { 1, 2,..., n) so that G perfectly matches to U. The next theorem
shows that for a given U it suffices to check only one such G.
Theorem 3. Let G, and G2 be two sets of columns that perfectly match into
U, and denote the set of hit columns corresponding to G, by Hi, i = 1, 2, etc.
Then

IHI I- IFi = IH21- IF2 .
Proof. Note that P depends only on U and not on Gi. Then it is easy to see
that IHI = UI - ISdj and IFI = IP - IS I, so that tHu - IFI = UI - IPI,
i=1,2. 0

If we fix a full-rank matching X in 9.., then any row subset U induces a
unique matched column subset G relative to A. Any such (U, G) pair will have
a perfect matching, namely A restricted to AuG, so (MP) ensures that Arjo will
be non-singular. Hence the multipliers can be found as in (4). Theorem 3 ensures
that the best (U, G) pair from among this restricted class of such pairs will solve
(ORSP1 ).

Letting the dependence of P on U be explicit, through (MP), Theorem 2 and
Theorem 3 we have reduced the apparently algebraic problem (ORSP 1 ) into the
purely combinatorial one of maximizing IUI - IP(U) over all U C { 2,..., m }.

Define R {2,...,m} and = R \ U. Then
Smax(IUl -IP()) = (m - 1) - mn(IP(U)I + U)).

By definition of 17 and P(U), every non-zero in ARz (the sero.seetlon of row 1
of A) is contained in either a row in 17 or a column in P(U). If we call rows and
columns lines, then in this situation we say that ARZ is eovered by the lines in
U P(U). Clearly any such covering of ARz by lines can be written as IU P(U)

for some U C R, so by (5), finding maxu(lUI - IP(U)I) is equivalent to finding
a minimum covering of AR, by lines. But by the classic theorem of K6nig and
Egervary (see Lawler (1976) p. 190), such a minimum cover can be computed
through a maximum matching in 9,,,:
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Theorem 4. M(9Rz) - minu(IP(U)l + IUI), and a maximum matching and a
-: minimum covering by lines are dual combinatorial objects. 0

By the duality theory of matching algorithms, if we find a maximum match-
ing in 9Rz through a labelling algorithm, then an optimum U for (ORSP1) is
the set of rows reachable via an alternating path from an unmatched row. That
is, Theorem 4 shows that this U solves the right-hand side of (5), so it also solves
the left-hand side, and so must solve (ORSP1).

Even better, the next theorem shows that the optimum U defined above
also solves the Strong (ORSPi). For a network flow problem with source s
and optimal flow f, define the standard minimum cut K - { ( I there
is an augmenting path 8 -+ i under f }. Note that the optimal U defined
above is a standard minimum cut for the usual way of solving a maximum
cardinality bipartite matching problem by converting it to an equivalent network
flow problem.

Theorem S. In a given network, the standard min cut is a subset of every mm
cut. Thus the standard min cut is the same for every optimal flow, hence it
is well-defined and has minimum cardinality among all min cuts (see Ford and
Fulkerson (1962) p. 13 for a proof). 0

Theorems 4 and 5 together imply that we can solve the Strong (ORSP1 )
through maximum matching, and that the optimal U is unique.

8. Two Algorithms %o (SP)

Once we have found the optimal U for each row i (say, Uj) through matching,
as noted above we can easily generate the sets Gi of columns by choosing Gi to
be the set of columns that matches into U( under the fixed matching A. These
(Ui, Gj) pairs completely determine the non-zero off-diagonal entries of a matrix
T as defined by (4). The question arises: is T non-singular?

To answer this question, it is necessary to investigate what the uniqueness
properties of the U[ imply for the structure of T . Define a directed graph D
with vertices V {1,...,m} and edges R = {(k,s) I k E Ui}; thus D repre-
sents the sparsity pattern of T*. If the row indices of A and T are ordered
consistent with the strong component decomposition of D, then the decomposi-
tion induces a block lower-triangular structure on T, where the diagonal blocks
of T* correspond to the strong components of D.

Theorem 6. If I E U& and k E U* then l E Ui.
Proof. For ease of notation let U = U,U -{,...,m}\{}\ P-

P(U;), and S - Zi \ P(Ui). Thus U and U partition the rows of the to-
section of row i of A, and P and P partition the columns. Recall that the rows
in 7 and the columns in P are a minimum cover of the zero-section of row i of

. ,. , ,. . , , . , -o . .. . " - , / - - . . " " .' ,- . . - .- , . - - - - .. . - . .. .- . . ,,, . , . - . . . . . ,- •.. . . - .
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A by lines. Thus Ay = 0, and, since k E U, Ag= 0. By the minimality
of this cover, the submatrix A7~p has a row.perfect matching, and so 1U1 lines
are necessary to cover it. Let L* be the standard minimum set of lines covering
the k* zero-section. Since Aar = 0 and k V U, the submatrix AVpr is part of
the zero-section of row k and so must be covered by the lines in L . Consider
the set of lines L=L U U \ P. Since the only non-zeros in the columns in
of the h1 sero-section occur in rows in U, L is a cover for the zero-section for
row k. The only change in lines between L and L is in lines passing through
Arp; since L has only [M lines passing through AV~r, the minimum possible
number, L must also be a minimum cover. Finally, L contains at least as many
rows as L, so that the U associated with L has at most as many rows as the U
associated with L, namely U . But U has the minimum possible number of
rows for any minimum cover of the zero-section of row k, soL - L*. But this
implies that U C U:.

The conclusion of Theorem 6 is precisely that the graph P is transitively
closed. This implies that the blocks of the block lower-triangular partition of

are either completely dense or all zero. In particular, Ui U } = Ut U { k }
for i and k in the same strong component of P. These observations allow us to
prove the following.

Thesesm T. T" is non-singular.

Proof. Since T* is block lower-triangular, it suffices to show that the diagonal
blocks of T are non-singular. A typical diagonal block is indexed b the vertices
in some strong component, say . As shown above, the set B* = U U ( i } is the
same for all i E B, and B Q B. Assume for convenience that te fixed maching
A is such that row i matches to column i, i = 1,..., m. f B = B, then the
diagonal block associated with B is clearly just a re-scaling of (Aay) - 1 (Aaa
is non-singular by (MP)), and so is non-singular. Otherwise, let L = B* \ B.
Then the diagonal block associated with B is a re-scaling of the bottom right
corner of the matrix

(AL A f -()

(this matrix is non-singldar by (MP)). But it is well-known that Xaa is non-
singular if and only if A, Is non-singular. But AL, is indeed non-singular by
(UP). 0

Since T* is non-singular, we can use it to transform A into X This way of
generating X processes each row in parallel, i.e. each row is solved relative to the
original matrix rther than relative to a partially tranformed matrix. We call
this procedure the ?mll .Msdth. (PA).
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Theorem 9 together with the preceding remarks prove the final theorem.
Tbearm 10. (A) also solves (SP) under (MP). 0

It is easy to get a good bound on the running time of the combinatorial part
of both (PA) and (SA). Let v be the number of non-zeros in A, which we can
"sume is greater than n. We use the following trick to reduce the running time
of both (PA) and (SA). For (SA) as well as (PA), find a fixed initial maximum
matching on A; this takes 0(mv) operations. Then, when finding a maximum
matching in a zero-section, copy over the part of the fixed matching that lies
in the columns of the zero-section as the starting matching; this copying takes
O(m 2) time. Since every initially unmatched row in the zero-section matches
to some column outside the zero-section in the fixed matching, the number of
unmatched rows in the starting solution for row i's sero-section can be at most
the number of non-zeros in row i. Thus the total number of augmentations
needed over all rows is 0(v). Since each augmentation is an 0(v) operation, we
get an 0(v2 ) overall bound for the combinatorics.

The time needed to do the numerical part of (PA) and (SA) can be bounded
as follows. In the worst case we will have to solve a linear system like (4) of
dimension 0(m) for each one of m rows. Solving one such system is bounded by
O(fs), so the numerical part is bounded by 0(m4) overall. However, we have
assumed that A is sparse, and there are sparse equations routines that can solve
a system like (4) intime more like O(m2 ). In practice we expect to see only O(1)
rows whose linear systems are really as Irgin u 0(m); most linear systems will
be of size 0(1). Thus under favorable circumstances the numerical computations
could take time as small as 0(m2 ).

4. Pretdatle

Very few real-life matrices satisfy (MP). In light of Theorem S we cannot
hope to actually solve (SP) on all real matrices, but we can try to apply one of
our algorithms or a variant as an "optimal" heuristic. Ideally, when we apply
our *real algorithms to real, full-rank matrices, they would be guaranteed to
achieve at lest the increase in sparsity that an ideal" algorithm would achieve
on a matrix with the same sparsity pattern that did satisfy (MP).

It is diecult to anticipate unexpected cancellation with real matrices. A
parallel type of algorithm is therefore unsuitable, as it has to proceed withoutknowhg where cancellation taes place. On the other hand, a sequential type of
Algorithm can take stock of the cancellation that arises at each step. However,
uwaat performance becomes more subtle in the presence of cancellation.

Conde the full-rank matrix

A=(02 14 0 •
a 0 5
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Any sequential algorithm will pick U1 = { 3 }, and could pick Gi - { 2 }. This
transformation unexpectedly zeros out columns 4 and 5 of row 1. Thus if we
naively process row 2 using this new row 1, we will choose U'2 = { 1 }. But
the parallel U2= 0, which does not contain U2 as required by the induction
hypothesis of Theorem 8, so we can no longer guarantee that our final answer will
be as good as the ideal. (A close reading of that proof of Theorem 8 will reveal
that the only way that this difficulty can arise is when rank ARZ < M(9RZ) for
some zero-section; in the second zero-section of this example, rank ARZ = 1 <
2 = M(9Rz).)

A simple trick will avoid this problem. As we perform (SA), we certainly
know at each step where we expect the non-zeros to occur for subsequent steps.
If we do encounter unexpected cancellation, we can merely pretend that there
is still a non-zero in the cancelled position. That is, subsequent matchings are
performed as if no unexpected cancellation ever took place, though we keep track
of which *non-zeros" are really zeros. Then the proof of Theorem 8 becomes
valid once again, and the modified (SA) is now guaranteed to produce an answer
at least as good as the "ideal" answer.

We now make some remarks about implementing (SA). Linear constraints
are usually presented as a mixture of equalities and inequalities. If these con-
straints are converted to the form (1) by adding a slack variable to each inequality
row, it is easy to see that there is always a maximum cardinality matching in
which every inequality row is matched to its slack column. It is also easy to
see that such rows can never be profitably used in the optimal U for any other
row, since the slack variable will always unavoidably fill-in its column. (In fact,
by this same reasoning, if A is known to have an embedded identity matrix,
then A must already be optimally sparse.) Hence (SA) will still work correctly
if we merely treat inequality rows as if they were unmatched, without having
to explicitly create a slack variable at all. This phenomenon implies that (SA)
will tend to find better solutions for systems with a high proportion of equality
constraints.

S. Further Questiom and Conclusion
Trying to solve the Sparsity Problem as described in this paper raises some

interesting questions. From an applications point of view, the chief question is:
Does (SA) help in practice or not? The answer to this question must come from
empirical experience with (SA) on various problems. We have implemented a
preliminary version of (SA) for this purpose; our results so far are encouraging,
but we have by no means conclusively demonstrated the usefulness of (SA). We
expect to report our computational experience with (SA) in the near future.

Although it is necessary to keep unexpected zeros as phantom non-zeros
to guarantee the performance of (SA) on real matrices, it is certainly feasible

~~~~~~~~~~. .. .. .... .... . .. ....... '.. .....:.......... . ........- . . ..... ..-
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to run the algorithm without this artifice. Can any guarantees be made in
this ca? Does this make much difference in practice? Alternatively, since
"lucky' cancellation has been observed in nearly all real examples we have tried,
is there some efficient heuristic for (SP) that can take advantage of this and
outperform (SA), perhaps restricted to some subset of interesting problems with
special structure? Finally, what happens when we try to apply these algorithms
to rank-deficient matrices?

We shall continue our reserch on (SP) and shall try to answer some of these
questions in future papers.

Appendx.

Proo. (of Theorem 1) This Theorem and its proof are due to L. Stockmeyer
(1982). See Garey and Johnson (1979) for the definitions of the concepts used in
this proof.

The problem that we shall reduce to (SP) is

Simple Max Cut: Given an undirected graph 9 = (V, E), partition the nodes of
9 into P and V \ P so as to maximize

[(({iY E E I sE PjE V \ P)l.

Let n = IVl, m = IEI, let A(9) be the usual (0,1) node-arc incidence matrix
of 9, and let Aj be the n X 2m matrix which is all zero except for row i, which
is half +1 and half -1. Let e be the 2m-vector of all ones and let f be the
(2m(n + 1) + 1)-vector of ones. Now suppose we could solve (SP) on the matrix

"8'I(Af Al A2  . "

Clearly some row of the optimal T for B(9), which we may assume without loss
of generality is the first, will be a multiple of (1, ei, e2,...,Es) where q = ±1 for
all i E V. (Because of the sie off the first column of T must be (1,0,0,...,0)
and so this choice for the first row of T causes no singularity problems.) Lot
P {i I c = +1 }. Then the number of non-seros in the first row of B(9) is
clearly

(2m(n-+ 1)-+ 1)-+ n 2 + (m- { ({ Ej I i E P,j E V \ P)I). (7)

But since (7) Is minimized by the optimal T, P also solves the Simple Max Cut
Problem for 9.
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Under a non-degeneracy assumption on the non-zero entries of a given sparse
matrix, a polynomially-bounded. algorithm is presented that performs row
operations on the given matrix which reduce it to a sparsest possible
matrix with the same row space. For each row of the matrix, the algorithm
performs a maximum cardinallty matching on the bipartite graph associated
with a submatrix which Is Induced by that row. The dual of the optimal
matching then specifies the row operations that will be performed on that
row. We also describe a variant algorithm that processes the matrix In
place, thus conserving storage and time. The modifications needed to apply
the algorithm to matrices that do not necessarily satisfy the
non-degeneracy assumption are also described. A particularly promising
application of this algorithm Is in the reduction of linear constraint
matrices.
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